Journal of Organometallic Chemistry, 386 (1990) 139-146
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
JOM 20484

Dimerization of 1 -alkynes catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$. Isolation of the intermediate (alkynyl)(vinyl)rhodium(III) complexes

I.P. Kovalev, K.V. Yevdakov, Yu.A. Strelenko, M.G. Vinogradov ${ }^{\star}$ and G.I. Nikishin
N.D. Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, Leninsky Prospekt, 47, Moscow 117913 (U.S.S.R.)

(Received October 12th, 1989)

Abstract

The dimerization of 1 -alkynes catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ yields conjugated enynes I and II ($\mathrm{I} / \mathrm{II}=1.4-2.4$), with a selectivity of $95-98 \%$.

The data indicate that the reaction proceeds by alkyne insertion into the metal-hydride bond of the intermediate (alkynyl)(hydride) $\mathbf{R h}^{\text {III }}$ complexes VII, VIII to give the (alkynyl)(vinyl) $\mathrm{Rh}^{\mathrm{III}}$ species cis- $\mathrm{RhCl}^{\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{CH}=\mathrm{CHC}_{3} \mathrm{H}_{7}\right)(\mathrm{C} \equiv}$ $\mathrm{CC}_{3} \mathrm{H}_{7}$) (IX) and cis- $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{CH}_{2}=\mathrm{CC}_{3} \mathrm{H}_{7}\right)\left(\mathrm{C}=\mathrm{CC}_{3} \mathrm{H}_{7}\right)$ (X) which were isolated. The thermal decomposition of IX and X in solution gives the enynes I and II correspondingly.

Introduction

It has been reported that the $\mathbf{R} \mathbf{h}^{\mathbf{I}}$ complexes catalyze the dimerization of $\mathbf{1 -}$ alkynes $[1-8]$ to give the conjugated (linear and branched) enynes; a branched isomer preponderates $[2,4,5]$. The Rh^{I} triphenylphosphine complexes are most commonly used as catalysts in these reactions. The total selectivity to enyne formation is $65-75 \%$, but alkyne trimerization also takes place [2,4,5].

Here we examine the dimerization of 1-alkynes catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$.

Results and discussion

In the presence of $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ dissolved in acetone, 1 -alkynes are readily converted into a mixture of the enynes I and II ; the linear isomer preponderates ($\mathrm{I} / \mathrm{II}=1.4-2.4$). The alkyne conversion is $77-85 \%$ and the selectivity to the formation of I and II is $95-98 \%$ (see Table 1). The linear dimer has the trans configuration.

$\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{13}$

Table 1
The dimerization of 1-alkynes catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}{ }^{a}$

1-Alkyne	1-Alkyne conversion \%	Yield of dimers ${ }^{\text {b }}$		Mol ($\mathbf{I}+\mathrm{II}$)/ mol catalyst
		I	II	
1-Pentyne	77	69	29	75
1-Hexyne	81	57	41	79
1-Octyne	85	59	39	84
1-Octyne	38	57	38	36

a All reactions were performed with 16 mmol of 1 -alkyne, 0.08 mmol of $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}, 1 \mathrm{ml}$ of acetone, at $80^{\circ} \mathrm{C}$ for $5 \mathrm{~h} .{ }^{b} \mathrm{GC}$ yields; the isolated yields are $5-10 \%$ less. ${ }^{c}$ In toluene (1 ml).

Under the conditions no dimers were obtained from phenylacetylene, ethyl propiolate and ethoxyacetylene.

Two mechanisms of the 1-alkynes catalytic dimerization have been postulated (Scheme 1): route (a) $[1,5]$ and route (b) $[9,10]$.

In mechanism (a) the π-coordinated alkyne in the alkynyl hydride intermediate \mathbf{B} is inserted into the metal-carbon bond to give the vinyl hydride intermediates \mathbf{C} and \mathbf{D}. Route (b) involves the insertion of coordinated alkyne into the metal-hydride bond of \mathbf{B} to give alkynyl vinyl species \mathbf{E} and \mathbf{F}.

There are no published data which would confirm the mechanisms depicted in Scheme 1. Moreover, there is a paucity of information about alkynyl hydride complexes of type $\mathbf{A}(M=\mathrm{Rh}[11,12]$, $\mathrm{Ir}[13])$. At the same time no examples of the complexes of $\mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F}^{*} have been reported.

We have determined the structure of the intermediates III-XI in the 1-pentyne dimerization reaction catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ (Scheme 2) by NMR spectroscopy.

When an excess of 1-pentyne was added to the $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ solution at $-65^{\circ} \mathrm{C}$ the trigonal bipyramidal π-complexes III and IV are immediately formed (experimental and calculated spectra of complex IV are depicted in Fig. 1). Under these conditions the equilibrium between initial $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ and alkyne π-complexes is shifted towards III and IV $\left(\mathrm{RhCl}_{(}\left(\mathrm{PMe}_{3}\right)_{3} /(\mathrm{III}+\mathrm{IV})=0.2\right)$. However, when the temperature was increased to $-35^{\circ} \mathrm{C}$ this equilibrium was shifted to the initial Rh^{I} complex $\left(\mathrm{RhCl}_{(}\left(\mathrm{PMe}_{3}\right)_{3} /(\mathrm{III}+\mathrm{IV})=1.5\right)$.

A further rise in temperature, to $-10^{\circ} \mathrm{C}$, converts the initial $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ and the π-complexes III and IV into a mixture of the square pyramidal π-complexes V and VI and the (alkynyl)(hydride)Rh ${ }^{\text {III }}$ complexes VII and VIII. Complexes VII and VIII are formed as a result of the oxidative addition of alkyne to Rh^{I} in corresponding complexes V and VI. It should be noted, that the ratios V/VI and VII/VIII are both approximately $3 / 2$, which approaches the ratio of $I / I I$ (see above). For this reason the ${ }^{31} \mathrm{P}$ chemical shifts listed in Table 2 for compounds V-VIII have been ascribed to the relevant phosphine ligands from the relative signal integrals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the pairs V/VI, VII/VIII, and the final product ratio of I/II.

The ${ }^{1} \mathrm{H}$ NMR data are also consistent with the structures of the intermediate complexes (Scheme 2). Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture of

[^0]
Scheme 1

Scheme 2

Table 2
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of complexes III-XI ${ }^{a}$

Complex	$\delta^{31} \mathrm{P} / \mathrm{ppm}$		${ }^{1} J(\mathrm{Rh}-\mathrm{P}) / \mathrm{Hz}$		${ }^{2} J(\mathrm{P}-\mathrm{P}) / \mathrm{Hz}$
	$\mathrm{P}^{\text {A }}$	$\mathrm{P}^{\text {B }}$	$\mathrm{P}^{\text {A }}$	$\mathrm{P}^{\mathbf{B}}$	
III	0.09	-14.34	100.9	148.6	39.9
IV ${ }^{\text {b }}$	4.15	3.70	151.3	99.0	
$\mathrm{V}^{\text {c }}$	-5.25	-13.54	93.9	95.3	32.7
VI ${ }^{\text {c }}$	-5.36	-13.67	94.2	95.0	32.8
VII ${ }^{\text {c }}$	-24.34	-5.66	95.4	68.4	28.9
VIII ${ }^{\text {c }}$	-24.36	-5.68	95.4	68.6	22.9
IX	-9.05	-23.09	98.4	68.2	27.0
X	-8.71	-23.01	99.2	66.2	26.1
XI	-8.23	-17.02	96.8	89.9	33.3

${ }^{a}$ Toluene- $d_{8},-35^{\circ} \mathrm{C} .{ }^{b} \delta\left(\mathrm{P}^{\mathrm{C}}\right)=3.72 \mathrm{ppm},{ }^{1} J\left(\mathrm{Rh}-\mathrm{P}^{\mathrm{C}}\right)=92.0 ;{ }^{2} J\left(\mathrm{P}^{\mathrm{A}}-\mathrm{P}^{\mathrm{B}}\right)=-34.0 ;{ }^{2} J\left(\mathrm{P}^{\mathrm{A}}-\mathrm{P}^{\mathrm{C}}\right)=$ $-30.7 ;{ }^{2} J\left(\mathrm{P}^{\mathrm{B}}-\mathrm{P}^{\mathrm{C}}\right)=37.0 \mathrm{~Hz} .{ }^{c} T=-10^{\circ} \mathrm{C}$.
$\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ and 1-pentyne (toluene- $d_{8},-10^{\circ} \mathrm{C}$) clearly shows the availability of complexes with $\mathrm{Rh}-\mathrm{H}$ bonds VII and VIII $\left(\delta(\mathrm{H}-\mathrm{Rh})=-8.97 \mathrm{ppm}\left({ }^{1} J(\mathrm{Rh}-\mathrm{H})=\right.\right.$ $\left.15.5 ;{ }^{2} J\left(\mathrm{H}-\mathrm{P}_{\text {trans }}\right)=213.7 ;{ }^{2} J\left(\mathrm{H}-\mathrm{P}_{c i s}\right)=15.5 \mathrm{~Hz}\right)$.

A further temperature increase, to $+25^{\circ} \mathrm{C}$, causes the appearance of the (alkynyl)(vinyl) $\mathrm{Rh}^{\mathrm{III}}$ complexes IX and X in a ratio of $3 / 2$ owing to the insertion of a coordinated alkyne into the $\mathrm{Rh}-\mathrm{H}$ bond (at this temperature complexes V and VI are absent in solution). These compounds are the first ever examples of the (alkynyl)(vinyl) $\mathrm{Rh}^{\text {III }}$ complexes. They have been isolated from the solution in a crystalline form. Complexes IX and X are stable in solution at room temperature, but when they are heated in toluene solution to $50^{\circ} \mathrm{C}$ reductive elimination occurs to give the conjugated enynes I and $I I$ in the ratio $I / I I=3 / 2$, cqual to that of IX/X. The direct observation of a reductive elimination reaction of this type has previously only been described for an (alkynyl)(vinyl)platinum ${ }^{11}$ complex [14].

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes IX and X are very similar and indicate the presence of two trans phosphine ligands ($\mathbf{P}^{\mathbf{A}}$) with $\delta-9 \mathrm{ppm}(J(\mathrm{Rh}-\mathbf{P}) 100$ Hz) in both complexes (cf. [12,15]) (Table 2). The chemical shifts of the phosphorus atoms cis to the two others $\left(\mathrm{P}^{\mathrm{B}}\right)$ are -23 ppm . In similar alkynyl hydride complexes, such as $\left[c i s-\mathrm{HRh}\left(\mathrm{PMe}_{3}\right)_{4}\left(\mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)\right] \mathrm{Cl}[12], \delta$ values for the trimethylphosphine ligands in trans to the hydrogen atom and the alkynyl group are -29 and -18 ppm , respectively, thus the chemical shifts of the phosphorus atom $\left(\mathrm{P}^{\mathrm{B}}\right)$ in complexes IX and X have intermediate values. Since the σ-donor ability falls in the order $\mathrm{H}>\mathrm{CH}=\mathrm{CHR}>\mathrm{C} \equiv \mathrm{CR}$ [16], a chemical shift of -23 ppm in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes must be attributed to the PMe_{3} trans to the alkenyl group (P^{B}). Moreover, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IX and X shows the presence, in toluene- d_{8} solution at $-35^{\circ} \mathrm{C}$, of a small amount (less than 3%) of the alkynyl vinyl complex, XI. In this complex, an isomer of IX and X, the alkynyl group and the phosphine ligand $\left(\mathrm{P}^{\mathrm{B}}\right)$ are trans to each other the ${ }^{31} \mathrm{P}$ chemical shift is -17 ppm (cf. ref. 12).

$$
\begin{aligned}
& \mathrm{P}=\mathrm{PMe}_{3} \\
& \mathrm{R}--\mathrm{CH}=\mathrm{CH}-\mathrm{Pr} \text { or }-\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{Pr}
\end{aligned}
$$

Thus, the obtained data indicate that the dimerization of the 1 -alkyne, catalyzed by $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$, follows mechanism (b); the insertion of alkyne into a metal-hydride bond in the intermediate \mathbf{B} (Scheme 1).

Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with a "Bruker AM 300" spectrometer in CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$, TMS as internal standard and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. The IR spectra were recorded with a Specord M 80 instrument as thin layers or as CsI pellets. The GC analysis was carried out in LHM-8MD(5) using a $200 \times 0.3 \mathrm{~cm}$ column with 15% of $1,2,3$-tris(β-cyanoethoxy)propane on a Chromosorb P. All operations were carried out under argon. Solvents and initial reagents were dried and degassed before use. $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ was prepared as described previously [17].

Dimerization of 1-alkynes. A mixture of $0.03 \mathrm{~g}(0.08 \mathrm{mmol})$ of $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}, 16$ mmol of alkyne and in 1 ml of the relevant solvent was heated for 5 h in a sealed glass tube at $80^{\circ} \mathrm{C}$. Then the reaction mixture was analysed by GC. The products were isolated by vacuum distillation. The spectral features of the dimers were similar to those described previously [5,18]. The results are listed in Table 1.

The study of the mechanism of 1 -alkynes dimerization. The reactions were monitored by NMR spectroscopy. $0.2 \mathrm{~g}(3.0 \mathrm{mmol})$ of 1-pentyne were placed in a 10 mm \varnothing NMR tube, cooled to $-80^{\circ} \mathrm{C}$ and then a solution of $0.037 \mathrm{~g}(0.1 \mathrm{mmol})$ of $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ in 3 ml of toluene $-d_{8}$ was added at the same temperature. The tube was placed in the spectrometer and the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at $-65,-35,-10$ and $+25^{\circ} \mathrm{C}$ (data are listed in Table 2).

Synthesis of the complexes $I X$ and $X . \quad 0.14 \mathrm{~g}(2 \mathrm{mmol})$ of 1-pentyne and 3 ml of acetone were added to $0.037 \mathrm{~g}(0.1 \mathrm{mmol})$ of $\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$ at -30 to $-40^{\circ} \mathrm{C}$. The resulting orange solution was then heated to room temperature and left to stand for 1 h . The pale yellow solution was evaporated in vacuo and the residue was dried at room temperature for 3 h . A mixture of complexes IX and X (IX/X=3/2) was isolated in quantitative yield. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectra data are listed in Table 2. ${ }^{1} \mathrm{H}$ NMR (δ, ppm, toluene- $d_{8},-35^{\circ} \mathrm{C}$): $0.99\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.26\left(\mathrm{~m}, 27 \mathrm{H}, \mathrm{PMe}_{3}\right)$; $1.38 \mathrm{~m} ; 1.48 \mathrm{~m} ; 1.85 \mathrm{~m} ; 2.27 \mathrm{~m} ; 2.78 \mathrm{~m}$ (all CH_{2}); $5.8-6.3(\mathrm{~m},=\mathrm{CH})$. IR spectrum of the mixture of IX and X in Nujol (ν, cm^{-1}): 2128w, $1640 \mathrm{w}, 1282 \mathrm{~m}, 945 \mathrm{~s}, 860 \mathrm{~m}$, $725 \mathrm{~m}, 675 \mathrm{~m}$, Found: $\mathrm{C}, 45.62 ; \mathrm{H}, 8.53 ; \mathrm{Cl}, 7.14 . \mathrm{C}_{19} \mathrm{H}_{43} \mathrm{ClP}_{3} \mathrm{Rh}$ calcd.: $\mathrm{C}, 45.38 ; \mathrm{H}$, 8.62; Cl. 7.05\%.

Decomposition of the complex IX and X. A mixture of complexes IX and X (0.04 g; prepared as described above) in toluene solution in a ratio of $2 / 3(3 \mathrm{ml})$ was heated for 30 min at $50^{\circ} \mathrm{C}$ and analyzed by GC. Only enynes I and II (I/II $=63 / 37$) were found in the reaction mixture once the reaction was complete.

References

[^1]7 H.J. Schmitt, H. Singer, J. Organomet. Chem., 153 (1978) 165.
8 H.-A. Schäfer, R. Marcy, T. Rüping, H. Singer, J. Organomet. Chem., 240 (1982) 17.
9 B.M. Trost, C. Chan, G. Ruhter, J. Amer. Chem. Soc., 109 (1987) 3486.
10 M.I. Winter, in F.R. Hartley and S. Patai (Eds) The Chemistry of the Metal-Carbon Bond, Vol. 3, John Wiley \& Sons Ltd., Chichester, 1985, p. 259.
11 J. Wolf, H. Werner, O. Serhadli, M.Z. Ziegler, Angew. Chem. Int. Ed. Engl., 22 (1983) 414.
12 T.B. Marder, D. Zargarian, J.C. Calabrese, T.H. Herskovitz, D. Milstein, J. Chem. Soc., Chem. Commun., (1987) 1484.
13 M.A. Bennett, R. Charles, P.J. Fraser, Aust. J. Chem., 30 (1977) 1213.
14 P.J. Stang, M.H. Kowalski, J. Amer. Chem. Soc., 111 (1989) 3356.
15 D. Milstein, J. Amer. Chem. Soc., 104 (1982) 5227.
16 G. Henrici-Olive, S. Olive, Coordination and Catalysis, part 7.6, Verlag Chemie, New York, 1977.
17 R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse, K.M. Abdul Malic, J. Chem. Soc., Dalton Trans., (1980) 511.
18 F.A. Selimov, O.G. Rutman, U.M. Djemilev, Z. Org. Khim., 19 (1983) 1853.

[^0]: * Recently $\mathrm{Pt}^{\text {II }}$ complexes of this type (F) were reported [14].

[^1]: 1 H. Singer, G. Wilkinson, J. Chem. Soc. (A), (1968) 849.
 2 P. Albano, M. Aresta, J. Organomet. Chem., 190 (1980) 243.
 3 M. Aresta, M. De Fazio, J. Organomet. Chem., 186 (1980) 109.
 4 L. Carlton, G. Read, J. Chem. Soc., Perkin Trans. I, (1978) 1631.
 5 S. Yoshikawa, J. Kiji, J. Furukawa, Macromol. Chem., 178 (1977) 1077.
 6 R.J. Kern, J. Chem. Soc., Chem. Commun., (1968) 706.

