Journal of Organometallic Chemistry, 386 (1990) 139–146 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20484

Dimerization of 1-alkynes catalyzed by RhCl(PMe₃)₃. Isolation of the intermediate (alkynyl)(vinyl)rhodium(III) complexes

I.P. Kovalev, K.V. Yevdakov, Yu.A. Strelenko, M.G. Vinogradov * and G.I. Nikishin

N.D. Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, Leninsky Prospekt, 47, Moscow 117913 (U.S.S.R.)

(Received October 12th, 1989)

Abstract

The dimerization of 1-alkynes catalyzed by $RhCl(PMe_3)_3$ yields conjugated enynes I and II (I/II = 1.4-2.4), with a selectivity of 95-98%.

The data indicate that the reaction proceeds by alkyne insertion into the metal-hydride bond of the intermediate (alkynyl)(hydride)Rh^{III} complexes VII, VIII to give the (alkynyl)(vinyl)Rh^{III} species cis-RhCl(PMe₃)₃(CH=CHC₃H₇)(C=CC₃H₇) (IX) and cis-RhCl(PMe₃)₃(CH₂=CC₃H₇)(C=CC₃H₇) (X) which were isolated. The thermal decomposition of IX and X in solution gives the enynes I and II correspondingly.

Introduction

It has been reported that the Rh^I complexes catalyze the dimerization of 1alkynes [1-8] to give the conjugated (linear and branched) enynes; a branched isomer preponderates [2,4,5]. The Rh^I triphenylphosphine complexes are most commonly used as catalysts in these reactions. The total selectivity to enyne formation is 65-75%, but alkyne trimerization also takes place [2,4,5].

Here we examine the dimerization of 1-alkynes catalyzed by RhCl(PMe₃)₃.

Results and discussion

In the presence of RhCl(PMe₃)₃ dissolved in acetone, 1-alkynes are readily converted into a mixture of the enynes I and II; the linear isomer preponderates (I/II = 1.4-2.4). The alkyne conversion is 77-85% and the selectivity to the formation of I and II is 95-98% (see Table 1). The linear dimer has the *trans* configuration.

$$2 R = \xrightarrow{R \to Cl(PMe_3)_3} R = \xrightarrow{R} R + R = R$$
(I)
(II)
(II)

 $\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7, \, \mathbf{C}_4 \mathbf{H}_9, \, \mathbf{C}_6 \mathbf{H}_{13}$

0022-328X/90/\$03.50 © 1990 Elsevier Sequoia S.A.

1-Alkyne	1-Alkyne conversion %	Yield of dimers ^b		Mol(l+Il)/
		Ī	II	mol catalyst
I-Pentyne	77	69	29	75
l-Hexyne	81	57	41	79
1-Octyne	85	59	39	84
1-Octyne	38	57	38	36

The dimerization of 1-alkynes catalyzed by RhCl(PMe₃)₃^a

^a All reactions were performed with 16 mmol of 1-alkyne, 0.08 mmol of RhCl(PMe₃)₃, 1 ml of acetone, at 80 ° C for 5 h. ^b GC yields; the isolated yields are 5-10% less. ^c In toluene (1 ml).

Under the conditions no dimers were obtained from phenylacetylene, ethyl propiolate and ethoxyacetylene.

Two mechanisms of the 1-alkynes catalytic dimerization have been postulated (Scheme 1): route (a) [1,5] and route (b) [9,10].

In mechanism (a) the π -coordinated alkyne in the alkynyl hydride intermediate **B** is inserted into the metal-carbon bond to give the vinyl hydride intermediates **C** and **D**. Route (b) involves the insertion of coordinated alkyne into the metal-hydride bond of **B** to give alkynyl vinyl species **E** and **F**.

There are no published data which would confirm the mechanisms depicted in Scheme 1. Moreover, there is a paucity of information about alkynyl hydride complexes of type A (M = Rh [11,12], Ir [13]). At the same time no examples of the complexes of C, D, E and F * have been reported.

We have determined the structure of the intermediates III-XI in the 1-pentyne dimerization reaction catalyzed by RhCl(PMe₃)₃ (Scheme 2) by NMR spectroscopy.

When an excess of 1-pentyne was added to the RhCl(PMe₃)₃ solution at -65° C the trigonal bipyramidal π -complexes III and IV are immediately formed (experimental and calculated spectra of complex IV are depicted in Fig. 1). Under these conditions the equilibrium between initial RhCl(PMe₃)₃ and alkyne π -complexes is shifted towards III and IV (RhCl(PMe₃)₃/(III + IV) = 0.2). However, when the temperature was increased to -35° C this equilibrium was shifted to the initial Rh^I complex (RhCl(PMe₃)₃/(III + IV) = 1.5).

A further rise in temperature, to -10° C, converts the initial RhCl(PMe₃)₃ and the π -complexes III and IV into a mixture of the square pyramidal π -complexes V and VI and the (alkynyl)(hydride)Rh^{III} complexes VII and VIII. Complexes VII and VIII are formed as a result of the oxidative addition of alkyne to Rh^I in corresponding complexes V and VI. It should be noted, that the ratios V/VI and VII/VIII are both approximately 3/2, which approaches the ratio of I/II (see above). For this reason the ³¹P chemical shifts listed in Table 2 for compounds V–VIII have been ascribed to the relevant phosphine ligands from the relative signal integrals in the ³¹P{¹H} NMR spectra of the pairs V/VI, VII/VIII, and the final product ratio of I/II.

The ¹H NMR data are also consistent with the structures of the intermediate complexes (Scheme 2). Thus, the ¹H NMR spectrum of the reaction mixture of

Table 1

^{*} Recently Pt^{II} complexes of this type (F) were reported [14].

Complex	δ ³¹ P/ppm		$^{1}J(Rh-P)/Hz$		$^{2}J(P-P)/Hz$
	PA	P ^B	P ^A	P ^B	
III	0.09	-14.34	100.9	148.6	39.9
IV ^b	4.15	3.70	151.3	99.0	
V ^c	- 5.25	-13.54	93.9	95.3	32.7
VI ^c	-5.36	-13.67	94.2	95.0	32.8
VII ^c	- 24.34	- 5.66	95.4	68.4	28.9
VIII ^c	- 24.36	- 5.68	95.4	68.6	22.9
IX	-9.05	- 23.09	98.4	68.2	27.0
x	-8.71	-23.01	99.2	66.2	26.1
XI	- 8.23	-17.02	96.8	89.9	33.3
a Talana d	2580 4500	C) 172	$1_{\mathcal{I}}(\mathbf{p}_{1} \mathbf{p}_{2}^{C}) = 0$	10. ² //DA E	$(B) = -34.0, \frac{2}{2}$

Table 2 ³¹P{¹H} NMR data of complexes III-XI ^a

^a Toluene- d_8 , -35° C. $b \delta(P^{C}) = 3.72$ ppm, ${}^{1}J(Rh-P^{C}) = 92.0$; ${}^{2}J(P^{A}-P^{B}) = -34.0$; ${}^{2}J(P^{A}-P^{C}) = -30.7$; ${}^{2}J(P^{B}-P^{C}) = 37.0$ Hz. ${}^{c}T = -10^{\circ}$ C.

RhCl(PMe₃)₃ and 1-pentyne (toluene- d_8 , -10°C) clearly shows the availability of complexes with Rh-H bonds VII and VIII (δ (H-Rh) = -8.97 ppm (¹J(Rh-H) = 15.5; ²J(H-P_{trans}) = 213.7; ²J(H-P_{cis}) = 15.5 Hz).

A further temperature increase, to +25 °C, causes the appearance of the (alkynyl)(vinyl)Rh^{III} complexes IX and X in a ratio of 3/2 owing to the insertion of a coordinated alkyne into the Rh–H bond (at this temperature complexes V and VI are absent in solution). These compounds are the first ever examples of the (alkynyl)(vinyl)Rh^{III} complexes. They have been isolated from the solution in a crystalline form. Complexes IX and X are stable in solution at room temperature, but when they are heated in toluene solution to 50 °C reductive elimination occurs to give the conjugated enynes I and II in the ratio I/II = 3/2, cqual to that of IX/X. The direct observation of a reductive elimination reaction of this type has previously only been described for an (alkynyl)(vinyl)platinum^{II} complex [14].

The ³¹P{¹H} NMR spectra of complexes IX and X are very similar and indicate the presence of two *trans* phosphine ligands (P^A) with δ -9 ppm (*J*(Rh-P) 100 Hz) in both complexes (cf. [12,15]) (Table 2). The chemical shifts of the phosphorus atoms *cis* to the two others (P^B) are -23 ppm. In similar alkynyl hydride complexes, such as [*cis*-HRh(PMe₃)₄(C=C(CH₂)₂OH)]Cl [12], δ values for the trimethylphosphine ligands in trans to the hydrogen atom and the alkynyl group are -29 and -18 ppm, respectively, thus the chemical shifts of the phosphorus atom (P^B) in complexes IX and X have intermediate values. Since the σ -donor ability falls in the order H > CH=CHR > C=CR [16], a chemical shift of -23 ppm in ³¹P{¹H} NMR spectra of these complexes must be attributed to the PMe₃ *trans* to the alkenyl group (P^B). Moreover, the ³¹P{¹H} NMR spectrum of IX and X shows the presence, in toluene-*d*₈ solution at -35°C, of a small amount (less than 3%) of the alkynyl vinyl complex, XI. In this complex, an isomer of IX and X, the alkynyl group and the phosphine ligand (P^B) are *trans* to each other the ³¹P chemical shift is -17 ppm (cf. ref. 12).

Thus, the obtained data indicate that the dimerization of the 1-alkyne, catalyzed by $RhCl(PMe_3)_3$, follows mechanism (b); the insertion of alkyne into a metal-hydride bond in the intermediate **B** (Scheme 1).

Experimental

The ¹H and ³¹P{¹H} NMR spectra were recorded with a "Bruker AM 300" spectrometer in CDCl₃ and C₆D₅CD₃, TMS as internal standard and 85% H₃PO₄ as external standard. The IR spectra were recorded with a Specord M 80 instrument as thin layers or as CsI pellets. The GC analysis was carried out in LHM-8MD(5) using a 200 × 0.3 cm column with 15% of 1,2,3-tris(β -cyanoethoxy)propane on a Chromosorb P. All operations were carried out under argon. Solvents and initial reagents were dried and degassed before use. RhCl(PMe₃)₃ was prepared as described previously [17].

Dimerization of 1-alkynes. A mixture of 0.03 g (0.08 mmol) of RhCl(PMe₃)₃, 16 mmol of alkyne and in 1 ml of the relevant solvent was heated for 5 h in a sealed glass tube at 80 °C. Then the reaction mixture was analysed by GC. The products were isolated by vacuum distillation. The spectral features of the dimers were similar to those described previously [5,18]. The results are listed in Table 1.

The study of the mechanism of 1-alkynes dimerization. The reactions were monitored by NMR spectroscopy. 0.2 g (3.0 mmol) of 1-pentyne were placed in a 10 mm \emptyset NMR tube, cooled to -80 °C and then a solution of 0.037 g (0.1 mmol) of RhCl(PMe₃)₃ in 3 ml of toluene-d₈ was added at the same temperature. The tube was placed in the spectrometer and the ¹H and ³¹P{¹H} NMR spectra were recorded at -65, -35, -10 and +25 °C (data are listed in Table 2).

Synthesis of the complexes IX and X. 0.14 g (2 mmol) of 1-pentyne and 3 ml of acetone were added to 0.037 g (0.1 mmol) of RhCl(PMe₃)₃ at -30 to -40 °C. The resulting orange solution was then heated to room temperature and left to stand for 1 h. The pale yellow solution was evaporated in vacuo and the residue was dried at room temperature for 3 h. A mixture of complexes IX and X (IX/X = 3/2) was isolated in quantitative yield. The ³¹P{¹H} NMR spectra data are listed in Table 2. ¹H NMR (δ , ppm, toluene- d_8 , -35° C): 0.99 (m, 6H, CH₃); 1.26 (m, 27H, PMe₃); 1.38 m; 1.48 m; 1.85 m; 2.27 m; 2.78 m (all CH₂); 5.8–6.3 (m, =CH). IR spectrum of the mixture of IX and X in Nujol (ν , cm⁻¹): 2128w, 1640w, 1282m, 945s, 860m, 725m, 675m, Found: C, 45.62; H, 8.53; Cl, 7.14. C₁₉H₄₃ClP₃Rh calcd.: C, 45.38; H, 8.62; Cl. 7.05%.

Decomposition of the complex IX and X. A mixture of complexes IX and X (0.04 g; prepared as described above) in toluene solution in a ratio of 2/3 (3 ml) was heated for 30 min at 50 °C and analyzed by GC. Only enynes I and II (I/II = 63/37) were found in the reaction mixture once the reaction was complete.

References

- 1 H. Singer, G. Wilkinson, J. Chem. Soc. (A), (1968) 849.
- 2 P. Albano, M. Aresta, J. Organomet. Chem., 190 (1980) 243.
- 3 M. Aresta, M. De Fazio, J. Organomet. Chem., 186 (1980) 109.
- 4 L. Carlton, G. Read, J. Chem. Soc., Perkin Trans. I, (1978) 1631.
- 5 S. Yoshikawa, J. Kiji, J. Furukawa, Macromol. Chem., 178 (1977) 1077.
- 6 R.J. Kern, J. Chem. Soc., Chem. Commun., (1968) 706.

- 7 H.J. Schmitt, H. Singer, J. Organomet. Chem., 153 (1978) 165.
- 8 H.-A. Schäfer, R. Marcy, T. Rüping, H. Singer, J. Organomet. Chem., 240 (1982) 17.
- 9 B.M. Trost, C. Chan, G. Ruhter, J. Amer. Chem. Soc., 109 (1987) 3486.
- 10 M.J. Winter, in F.R. Hartley and S. Patai (Eds) The Chemistry of the Metal-Carbon Bond, Vol. 3, John Wiley & Sons Ltd., Chichester, 1985, p. 259.
- 11 J. Wolf, H. Werner, O. Serhadli, M.Z. Ziegler, Angew. Chem. Int. Ed. Engl., 22 (1983) 414.
- 12 T.B. Marder, D. Zargarian, J.C. Calabrese, T.H. Herskovitz, D. Milstein, J. Chem. Soc., Chem. Commun., (1987) 1484.
- 13 M.A. Bennett, R. Charles, P.J. Fraser, Aust. J. Chem., 30 (1977) 1213.
- 14 P.J. Stang, M.H. Kowalski, J. Amer. Chem. Soc., 111 (1989) 3356.
- 15 D. Milstein, J. Amer. Chem. Soc., 104 (1982) 5227.
- 16 G. Henrici-Olive, S. Olive, Coordination and Catalysis, part 7.6, Verlag Chemie, New York, 1977.
- 17 R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse, K.M. Abdul Malic, J. Chem. Soc., Dalton Trans., (1980) 511.
- 18 F.A. Selimov, O.G. Rutman, U.M. Djemilev, Z. Org. Khim., 19 (1983) 1853.